A Study on Subordination Results for Certain Subclasses of Analytic Functions defined by Convolution

M.K. Aouf*, A.A. Shamandy, A.O. Mostafa and A.K. Wagdy

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Abstract: In this paper, we drive several interesting subordination results of certain classes of analytic functions defined by convolution.

Keywords and phrases: Analytic function, Hadamard product, subordination, factor sequence.

2000 Mathematics Subject Classification: 30C45

1. INTRODUCTION

Let \(A \) denote the class of functions of the form:

\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1.1}
\]

which are analytic in the open unit disc \(\mathbb{U} = \{z \in \mathbb{C}: |z| < 1\} \). Let \(\varphi \in A \) be given by

\[
\varphi(z) = z + \sum_{k=2}^{\infty} c_k z^k. \tag{1.2}
\]

Definition 1. (Hadamard product or convolution). Given two functions \(f \) and \(\varphi \) in the class \(A \), where \(f(z) \) is given by (1.1) and \(\varphi(z) \) is given by (1.2) the Hadamard product (or convolution) \(f \ast \varphi \) of \(f \) and \(\varphi \) is defined (as usual) by

\[
(f \ast \varphi)(z) = z + \sum_{k=2}^{\infty} a_k c_k z^k = (\varphi \ast f)(z). \tag{1.3}
\]

We also denote by \(K \) the class of functions \(f(z) \in A \) that are convex in \(\mathbb{U} \).

Let \(M(\beta) \) be the subclass of \(A \) consisting of functions \(f(z) \) which satisfy the inequality:

\[
Re \left\{ \frac{zf''(z)}{f'(z)} \right\} < \beta \quad (z \in \mathbb{U}), \tag{1.4}
\]

for some \(\beta > 1 \). Also let \(N(\beta) \) denote the subclass of \(A \) consisting of functions \(f(z) \) which satisfy the inequality:

\[
Re \left\{ 1 + \frac{zf'''(z)}{f''(z)} \right\} < \beta \quad (z \in \mathbb{U}), \tag{1.5}
\]

for some \(\beta > 1 \) (see [7], [8], [9] and [10]). For \(1 < \beta \leq \frac{4}{3} \), the classes \(M(\beta) \) and \(N(\beta) \) were investigated earlier by Uralegaddi et al. [14] (see also [12] and [13]). It follows from (1.4) and (1.5) that

\[
f(z) \in N(\beta) \iff zf'(z) \in M(\beta). \tag{1.6}
\]

For \(0 \leq \lambda < 1, \beta > 1 \) and for all \(z \in \mathbb{U} \), let \(T(g, \lambda, \beta) \) be the subclass of \(A \) consisting of functions \(f(z) \) of the form (1.1) and functions

\[
g(z) = z + \sum_{k=2}^{\infty} b_k z^k \quad (b_k > 0), \tag{1.7}
\]

which satisfying the analytic criterion:

Received, September 2011; Accepted, March 2012

*Corresponding author, M.K. Aouf; Email: mkaouf127@yahoo.com
\[\text{Re} \left\{ \frac{z(f \ast g)'(z)}{(1 - \lambda)(f \ast g)(z) + \lambda z(f \ast g)'(z)} \right\} < \beta. \quad (1.8) \]

We note that:

(i) \(T\left(\frac{z}{1-z}, 0, \beta \right) = M(\beta) \) and \(T\left(\frac{z}{(1-z)^2}, 0, \beta \right) = N(\beta) \) (\(\beta > 1 \)) (see [7]);

(ii) \(T(g, 0, \beta) = M(g, \beta)(\beta > 1) \) (see [1]).

Also we note that:

(i) \(T\left(\frac{z}{1-z}, \lambda, \beta \right) = T_M(\lambda, \beta) \)
\[= \left\{ f \in A : \text{Re} \left\{ \frac{zf'(z)}{(1 - \lambda)f(z) + \lambda zf'(z)} \right\} < \beta \ (0 \leq \lambda < 1, \beta > 1, z \in \mathbb{U} \right\}; \]

(ii) \(T\left(\frac{z}{(1-z)^2}, \lambda, \beta \right) = T_N(\lambda, \beta) \)
\[= \left\{ f \in A : \text{Re} \left\{ \frac{f'(z) + zf''(z)}{f'(z) + \lambda zf''(z)} \right\} < \beta \ (0 \leq \lambda < 1, \beta > 1, z \in \mathbb{U} \right\}; \]

(iii) \(T\left(z + \sum_{k=0}^{\infty} \Gamma_k(a_k)z^k, \lambda, \beta \right) = T_{q,s}(\alpha_1, \lambda, \beta) \)
\[= \left\{ f \in A : \text{Re} \left\{ \frac{z(H_q,s(\alpha_1, \beta_1)f(z))'}{(1 - \lambda)H_q,s(\alpha_1, \beta_1)f(z) + \lambda z(H_q,s(\alpha_1, \beta_1)f(z))'} \right\} < \beta \}, \]

where \(\Gamma_k(\alpha_1) \) is defined by
\[\Gamma_k(\alpha_1) = \frac{(\alpha_1)_{k-1} \ldots (\alpha_q)_{k-1}}{(\beta_1)_{k-1} \ldots (\beta_s)_{k-1}(1)_{k-1}} \quad (1.9) \]
\[(\alpha_i > 0, i = 1, \ldots, q; \beta_j > 0, j = 1, \ldots, s; q \leq s + 1, q, s \in \mathbb{N}_0, \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \mathbb{N} = \{1,2, \ldots\}) , \]

and the operator \(H_{q,s}(\alpha_1, \beta_1) \) was introduced and studied by Dziok and Srivastava ([4] and [5]), which is a generalization of many other linear operators considered earlier.

(iv) \(T\left(z + \sum_{k=0}^{\infty} c_k(b_0)z^k, \lambda, \beta \right) = T(\mu, \ell, \lambda, \beta) \)
\[= \left\{ f \in A : \text{Re} \left\{ \frac{z(\Gamma^m(\mu, \ell)f(z))'}{(1 - \lambda)\Gamma^m(\mu, \ell)f(z) + \lambda z(\Gamma^m(\mu, \ell)f(z))'} \right\} < \beta \}, \]

where \(m \in \mathbb{N}_0, \mu, \ell \geq 0, z \in \mathbb{U} \) and the operator \(\Gamma^m(\mu, \ell) \) was defined by Cătaş et al. [3], which is a generalization of many other linear operators considered earlier;

\[\text{Re} \left\{ z \Gamma^m(\mu, \ell)f(z) \right\}' \]
\[= \left\{ f \in A : \text{Re} \left\{ \frac{z(\Gamma^m(\mu, \ell)f(z))'}{(1 - \lambda)\Gamma^m(\mu, \ell)f(z) + \lambda z(\Gamma^m(\mu, \ell)f(z))'} \right\} < \beta \} \]
\[\left\{ f \in A : \text{Re} \left\{ \frac{z(\Gamma^m(\mu, \ell)f(z))'}{(1 - \lambda)\Gamma^m(\mu, \ell)f(z) + \lambda z(\Gamma^m(\mu, \ell)f(z))'} \right\} < \beta \} \]

Where \(C_k(b, \mu) \) is defined by
\[C_k(b, \mu) = \frac{(1 + b)\mu}{k + b} \quad (\mu \in \mathbb{C}, b \in \mathbb{C} \{\mathbb{Z}_0^+\}, \mathbb{Z}_0^- = \mathbb{Z} \backslash \mathbb{N}), \quad (1.10) \]

and the operator \(f^\mu_b \) was introduced by Srivastava and Attiya [11], which is a generalization of many other linear operators considered earlier.

Definition 2. (Subordination principle). For two functions \(f \) and \(\varphi \), analytic in \(\mathbb{U} \), we say that the function \(f(z) \) is subordinate to \(\varphi(z) \) in \(\mathbb{U} \), written \(f(z) \prec \varphi(z) \), if there exists a Schwarz function \(w(z) \), which (by definition) is analytic in \(\mathbb{U} \) with \(w(0) = 0 \) and \(|w(z)| < 1 \), such that \(f(z) = \varphi(w(z)) \). Indeed it is known that
\[f(z) \prec \varphi(z) \Rightarrow f(0) = \varphi(0) \text{ and } f(\mathbb{U}) \subset \varphi(\mathbb{U}) . \]

Furthermore, if the function \(\varphi \) is univalent in \(\mathbb{U} \), then we have the following equivalence (see [2] and [6]):
\[f(z) \prec \varphi(z) \Leftrightarrow f(0) = \varphi(0) \text{ and } f(\mathbb{U}) \subset \varphi(\mathbb{U}) . \]

Definition 3. (Subordinating factor sequence). [15]. A sequence \(\{d_k\}_{k=1}^{\infty} \) of complex numbers is said to be a subordinating factor sequence if, whenever \(f \) of the form (1.1) is analytic, univalent
and convex in \mathbb{U}, we have

$$\sum_{k=2}^{\infty} d_k a_k z^k < f(z) \quad (a_1 = 1; z \in \mathbb{U}).$$

2. MAIN RESULTS

Unless otherwise mentioned, we assume throughout this paper that $0 \leq \lambda < 1, \beta > 1, z \in \mathbb{U}$ and $g(z)$ is given by (1.7) with $b_{k+1} \geq b_k$ ($k \geq 2$).

To prove our main result we need the following lemmas.

Lemma 1. [15]. The sequence $\{d_k\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

$$\text{Re} \left\{ 1 + 2 \sum_{k=1}^{\infty} d_k z^k \right\} > 0. \tag{2.1}$$

Now, we prove the following lemma which gives a sufficient condition for functions belonging to the class $T(g; \lambda, \beta)$:

Lemma 2. A function $f(z)$ of the form (1.1) is said to be in the class $T(g; \lambda, \beta)$ if

$$\sum_{k=2}^{\infty} \left(\frac{(1-\lambda)(k-1)}{[1+\lambda(k-1)]} \right) b_k |a_k| \leq 2(\beta-1). \tag{2.2}$$

Proof. Assume that the inequality (2.2) holds true. Then it suffices to show that

$$\frac{z(f \ast g)'(z)}{(1-\lambda)(f \ast g)(z) + \lambda z(f \ast g)'(z) - (2\beta-1)} < 1.$$

We have

$$\frac{z(f \ast g)'(z)}{(1-\lambda)(f \ast g)(z) + \lambda z(f \ast g)'(z) - (2\beta-1)} \leq \frac{\sum_{k=2}^{\infty} (1-\lambda)(k-1) b_k |a_k| z^{k-1}}{2(\beta-1) - \sum_{k=2}^{\infty} |k - (2\beta-1)(1+\lambda(k-1))| b_k |a_k| z^{k-1}} < 1.$$

This completes the proof of Lemma 2.

Corollary 1. Let the function $f(z)$ defined by (1.1) be in the class $T(g; \lambda, \beta)$, then

$$|a_k| \leq \frac{2(\beta-1)}{[(1-\lambda)(k-1) + |k - (2\beta-1)(1+\lambda(k-1))]|b_k} \tag{2.3}$$

The result is sharp for the function

$$f(z) = z + \frac{2(\beta-1)}{[(1-\lambda)(k-1) + |k - (2\beta-1)(1+\lambda(k-1))]|b_k} \tag{2.4}$$

Let $T^*(g; \lambda, \beta)$ denote the subclass of functions $f(z) \in A$ whose coefficients satisfy the condition (2.2). We note that $T^*(g; \lambda, \beta) \subseteq T(g; \lambda, \beta)$.

Thereom 1. Let $f(z) \in T^*(g; \lambda, \beta)$. Then

$$\text{Re}(f(z)) > \frac{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2}{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2} \tag{2.5}$$

for every function $h \in K$, and

$$\text{Re}(f(z)) > \frac{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2}{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2} \tag{2.6}$$

The constant factor $\frac{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2}{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2}$ in the subordination result (2.5) is the best estimate.

Proof. Let $f(z) \in T^*(g; \lambda, \beta)$ and suppose that $h(z) = z + \sum_{k=2}^{\infty} b_k z^k \in K$, then

$$\frac{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2}{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2} \left(f \ast h \right)(z)$$

$$= \frac{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2}{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2} \left(z + \sum_{k=2}^{\infty} b_k a_k z^k \right) \tag{2.7}$$

Thus, by using Definition 3, the subordination result holds true if

$$\left\{ \frac{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2}{[1-\lambda + |3-2\beta - \lambda(2\beta-1)|]b_2} \right\}_{k=1}^{\infty}.$$
Subordination Results for Certain Subclasses of Analytic Functions

is a subordinating factor sequence, with \(a_1 = 1\). In view of Lemma 1, this is equivalent to the following inequality:

\[
\Re \left\{ 1 + \sum_{k=1}^{\infty} \frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} a_k z^k \right\} > 0.
\] (2.8)

Now, since

\[
\Psi(k) = \{(1 - \lambda)(k - 1) + |k - (2\beta - 1)(1 + \lambda(k - 1))\} b_k
\]
is an increasing function of \(k \geq 2\), we have

\[
\Re \left\{ 1 + \sum_{k=1}^{\infty} \frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} a_k z^k \right\} = \Re \left\{ 1 + \frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} b_k z^k \right\} \geq 1 - \frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} \sum_{k=1}^{\infty} \left[\frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} a_k \right] v^{k}
\]

where we have also made use of assertion (2.2) of Lemma 2. Thus (2.8) holds true in \(\mathbb{U}\). This proves the inequality (2.5). The inequality (2.6) follows from (2.5) by taking the convex function

\[
h(z) = \frac{z}{1 - z} = z + \sum_{k=2}^{\infty} z^k \in K.
\] (2.9)

To prove the sharpness of the constant

\[
\frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} b_k z^2.
\]

we consider the function \(f_0(z) \in T^*(g; \lambda, \beta)\) given by

\[
f_0(z) = z - \frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} f_0(z) < \frac{z}{1 - z}
\]

It is easily verified that

\[
\min_{|z| < 1} \Re \left\{ \frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} f_0(z) \right\} = \frac{1}{2}
\]

This show that the constant

\[
\frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[2(\beta - 1) + [1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} b_k z^2
\]

is the best possible. This completes the proof of Theorem 1.

Remark. (i) Taking \(g(z) = \frac{z}{1 - z}\) and \(\lambda = 0\) in Lemma 2 and Theorem 1, we obtain the result obtained by Srivastava and Attiya [10, Corollary 2] and Nishiwaki and Owa [7, Theorem 2.1];

(ii) Taking \(g(z) = \frac{z}{(1 - z)^2}\) and \(\lambda = 0\) in Lemma 2 and Theorem 1, we obtain the result obtained by Srivastava and Attiya [10, Corollary 4] and Nishiwaki and Owa [7, Corollary 2.2].

Also, we establish subordination results for the associated subclasses, \(M^*(g, \beta)\), \(T_M^*(\lambda, \beta)\), \(T_N^*(\lambda, \beta)\), \(T_{q, s}^*(\alpha_1, \lambda, \beta)\), \(T^*(m, \mu, \ell, \lambda, \beta)\) and \(T^*(\mu, b, \lambda, \beta)\), whose coefficients satisfy the condition (2.2) in the special cases as mentioned in the introduction.

By taking \(\lambda = 0\) in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 2. Let the function \(f(z)\) defined by (1.1) be in the class \(M^*(g, \beta)\) and satisfy the condition

\[
\sum_{k=2}^{\infty} [k - |k - (2\beta - 1)|] b_k |a_k| \leq 2(\beta - 1).
\] (2.11)

Then for every function \(h \in K\), we have:
\[\frac{(1 + |3 - 2\beta|)b_2}{2(2\beta - 1) + (1 + |3 - 2\beta|)b_2} (f \ast h)(z) < h(z) \]
(2.12)

and

\[\text{Re}(f(z)) > -\frac{2(\beta - 1) + (1 + |3 - 2\beta|)b_2}{1 + |3 - 2\beta|b_2}. \]
(2.13)

The constant factor \(\frac{1 + |3 - 2\beta|b_2}{2(2\beta - 1) + (1 + |3 - 2\beta|)b_2} \) in the subordination result (2.12) cannot be replaced by a larger one and the function

\[f_0(z) = z - \frac{2(\beta - 1)}{1 + |3 - 2\beta|b_2} z^2 \]
(2.14)

gives the sharpness.

By taking \(g(z) = \frac{z}{(1-z)^2} \) in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 3. Let the function \(f(z) \) defined by (1.1) be in the class \(T^*_N(\lambda, \beta) \) and satisfy the condition

\[\sum_{k=2}^{\infty} \left\{ \frac{(1 - \lambda)(k - 1) + (1 + \lambda(k - 1))}{(k - (2\beta - 1)[1 + \lambda(k - 1)])} \right\} |a_k| \leq 2(\beta - 1). \]
(2.15)

Then for every function \(h \in K \), we have:

\[\frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{2[2\beta - 1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} (f \ast h)(z) < h(z) \]
(2.16)

and

\[\text{Re}(f(z)) > -\frac{[2\beta - 1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}. \]
(2.17)

The constant factor \(\frac{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]}{2[2\beta - 1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} \) in the subordination result (2.16) cannot be replaced by a larger one and the function

\[f_0(z) = z - \frac{2(\beta - 1)}{1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|} z^2 \]
(2.18)

gives the sharpness.

By taking \(g(z) = \frac{z}{(1-z)^2} \) in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 4. Let the function \(f(z) \) defined by (1.1) be in the class \(T^*_M(\lambda, \beta) \) and satisfy the condition

\[\sum_{k=2}^{\infty} \left\{ \frac{(1 - \lambda)(k - 1) + (1 + \lambda(k - 1))}{(k - (2\beta - 1)[1 + \lambda(k - 1)])} \right\} |a_k| \leq 2(\beta - 1). \]
(2.19)

Then for every function \(h \in K \), we have:

\[\frac{1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|}{2[2\beta - 1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} (f \ast h)(z) < h(z) \]
(2.20)

and

\[\text{Re}(f(z)) > -\frac{\beta - 1}{1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|}. \]
(2.21)

The constant factor \(\frac{1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|}{2[2\beta - 1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} \) in the subordination result (2.20) cannot be replaced by a larger one and the function

\[f_0(z) = z - \frac{\beta - 1}{1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|} z^2 \]
(2.22)

gives the sharpness.

By taking \(b_k = \Gamma_k(\alpha_1) \), where \(\Gamma_k(\alpha_1) \) defined by (1.9), in Lemma 2 and Theorem 1, we obtain the following corollary:

Corollary 5. Let the function \(f(z) \) defined by (1.1) be in the class \(T^*_q, s(\alpha_1, \lambda, \beta) \) and satisfy the condition

\[\sum_{k=2}^{\infty} \left\{ \frac{(1 - \lambda)(k - 1) + (1 + \lambda(k - 1))}{[k - (2\beta - 1)[1 + \lambda(k - 1)]]} \right\} |\Gamma_k(\alpha_1)| a_k | \leq 2(\beta - 1). \]
(2.23)

Then for every function \(h \in K \), we have:

\[\frac{1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|}{2[2\beta - 1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|]} (f \ast h)(z) < h(z) \]
(2.24)
and
\[
\text{Re}(f(z)) > -\left\{ 2(\beta - 1) \right\} \times \frac{2(\beta - 1)}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|][\ell + 1]} \Gamma_2(\alpha_1)
\]
\[
\text{Corollary 6. Let the function } f(z) \text{ defined by (1.1) be in the class } T^\ast(\mu, \lambda, \beta) \text{ and satisfy the condition}
\]
\[
\sum_{k=2}^{\infty} \left\{ \frac{(1 - \lambda)(k - 1)}{[1 + \lambda(k - 1)]} \right\} \left[\frac{\ell + 1 + \mu(k - 1)}{\ell + 1} \right] |a_k| \leq 2(\beta - 1).
\]
\[
\text{Then for every function } h \in K, \text{ we have:}
\]
\[
\frac{1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|}{{\ell + 1 + \mu}} \left(f \ast h \right)(z) < h(z)
\]
\[
\text{and}
\]
\[
\text{Re}(f(z)) > -\left\{ 2(\beta - 1) \right\} \times \frac{2(\beta - 1)}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|][\ell + 1]} \Gamma_2(\alpha_1)
\]
\[
\text{gives the sharpness.}
\]
\[
\text{By taking } b_k = C_k(b, \mu), \text{ where } C_k(b, \mu) \text{ defined by (1.10), in Lemma 2 and Theorem 1, we obtain the following corollary:}
\]
\[
\text{Corollary 7. Let the function } f(z) \text{ defined by (1.1) be in the class } T^\ast(\mu, b, \lambda, \beta) \text{ and satisfy the condition}
\]
\[
\sum_{k=2}^{\infty} \left\{ \frac{(1 - \lambda)(k - 1)}{[1 + \lambda(k - 1)]} \right\} C_k(b, \mu)|a_k| \leq 2(\beta - 1).
\]
\[
\text{Then for every function } h \in K, \text{ we have:}
\]
\[
\frac{1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|}{{\ell + 1 + \mu}} \left(f \ast h \right)(z) < h(z)
\]
\[
\text{and}
\]
\[
\text{Re}(f(z)) > -\left\{ 2(\beta - 1) \right\} \times \frac{2(\beta - 1)}{[1 - \lambda + |3 - 2\beta - \lambda(2\beta - 1)|][\ell + 1]} \Gamma_2(\alpha_1)
\]
\[
\text{gives the sharpness.}
\]
\[
3. \text{ ACKNOWLEDGEMENTS}
\]

The authors thank the anonymous referees of the paper for their helpful suggestions.

4. REFERENCES

