A DUAL TO VARIANCE RATIO-TYPE ESTIMATOR IN SIMPLE RANDOM SAMPLING

Javid Shabbir

Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan

Received February 2006, accepted July 2006

Communicated by Prof. Dr. Q. K. Ghori

Abstract: We propose a dual to variance ratio-type estimator to estimate the finite population variance. The optimum mean square error of this estimator is equal to variance of a linear regression estimator and is better than the usual unbiased variance estimator and Isaki (Jour Amer. Statis Assoc. 78:117-123, 1983) estimator. We use the jackknife technique to make the proposed estimator unbiased. The validity of the proposed estimator is examined by using the various data sets.

Keywords: Ratio estimator, auxiliary variable, bias, mean square error (MSE), efficiency, Jacknife technique

Introduction

Let \(U \) be a finite population consisting of \(N \) units \(U_1, U_2, \ldots, U_N \) from which a sample of size \(n \) is to be drawn by simple random sampling without replacement (SRSWOR). Let \(y \) and \(x \) denote the study and auxiliary variables respectively and \(y \) is positively correlated with \(x \). Let \(S_y^2 = \sum_{i=1}^{N} (y_i - \bar{Y})^2 / (N-1) \) and
\[
S_x^2 = \sum_{i=1}^{N} (x_i - \bar{X})^2 / (N-1)
\]
derive the population variances of \(y \) and \(x \) respectively. Similarly, one can obtain the sample variances \(s_y^2 = \sum_{i=1}^{n} (y_i - \bar{Y})^2 / (n-1) \) and \(s_x^2 = \sum_{i=1}^{n} (x_i - \bar{X})^2 / (n-1) \) of \(y \) and \(x \) respectively. Let \(C_y = S_y^2 / \bar{Y} \) and \(C_x = S_x^2 / \bar{X} \) denote the coefficient of variations of \(y \) and \(x \), respectively. To estimate \(S_y^2 \), it is assumed that \(S_y^2 \) is known.

Definition:

Let \(\Delta_0 = (s_y^2 - S_y^2) / S_y^2 \) and \(\Delta_i = (s_i^2 - S_i^2) / S_i^2 \), therefore \(E(\Delta_0) = E(\Delta_i) = 0 \), \(E(\Delta_i^2) = \left(\frac{1}{n} - \frac{1}{N} \right) (\lambda_{xx} - 1) \),
\[
E(\Delta_0) = \left(\frac{1}{n} - \frac{1}{N} \right) (\lambda_{xx} - 1), \quad \text{where} \quad \lambda_{pq} = \mu_{pq} / (\mu_{02} \mu_{02}^{1/2}),
\]
and \(\mu_{pq} = \sum_{i=1}^{N} (y_i - \bar{Y}) (x_i - \bar{X}) / (N-1) \).

The conventional unbiased variance estimator is defined as
\[
\hat{S}_0^2 = s_y^2
\]
The variance of \(\hat{S}_0^2 \) is given by
\[
\text{Var}(\hat{S}_0^2) = \left(\frac{1}{n} - \frac{1}{N} \right) S_y^4 (\lambda_{40} - 1).
\]
Isaki [2] suggested the following variance ratio estimator
\[
\hat{S}_1^2 = s_y^2 \left(\frac{S_x^2}{s_x^2} \right).
\]
The bias and MSE to first order of approximation are given by
Dual to variance ratio-type estimator

\[
Bias(\hat{S}^2_1) = \left(1 - \frac{1}{n} \right) S^2_i \left[(\lambda_{04} - 1) - (\lambda_{22} - 1) \right]
\]
(4)

and

\[
MSE(\hat{S}^2_1) = \left(1 - \frac{1}{n} \right) S^2_i \left[(\lambda_{04} - 1)^2 + (\lambda_{04} - 1) - 2(\lambda_{22} - 1) \right].
\]
(5)

Now we propose the following dual to variance ratio-type estimator.

Proposed Estimator

The following proposed estimator is the combination of usual unbiased variance estimator given in (1) and dual to variance ratio estimator with weights \(w_1\) and \(w_2\) such that \(w_1 + w_2 = 1\) as

\[
\hat{S}^2_p = w_1 S^2_y + w_2 S^2_y \left(\frac{s^2}{S^2_y} \right),
\]
(6)

where \(s^2 = \frac{N s^2 - n \hat{S}^2}{N - n}\) is due to Srivenkataramana [6].

From (6), we have

\[
\hat{S}^2_p = w_1 S^2_y (1 + \Delta_0) + w_2 S^2_y (1 + \Delta_0) (1 + \eta \Delta_1),
\]
(7)

where \(\eta = n/(N - n)\).

From (7), we have

\[
\hat{S}^2_p - \hat{S}^2_y = S^2_y [\Delta_0 - w_2 \eta (\Delta_1 + \Delta_0 \Delta_1)].
\]
(8)

Solving (8), we get the bias and MSE of \(\hat{S}^2_p\) which are given by

\[
Bias(\hat{S}^2_p) = E(\hat{S}^2_p - S^2_y) = -\left(1 - \frac{1}{n} \right) w_2 S^2_y \eta (\lambda_{22} - 1)
\]
(9)

and

\[
MSE(\hat{S}^2_p) = E(\hat{S}^2_p - S^2_y)^2 = S^2_y E[\Delta_0 - w_2 \eta \Delta_1]^2.
\]
(10)

From (2) and (10), it follows that

(i) \(MSE(\hat{S}^2_p) < Var(\hat{S}^2_i)\) if either \(\frac{(\lambda_{04} - 1)}{(\lambda_{04} - 1)} > \frac{1}{2} w \eta\).
(11)

From (5) and (10), it follows that

(ii) \(MSE(\hat{S}^2_p) < MSE(\hat{S}^2_i)\) if either \(\frac{(\lambda_{04} - 1)}{(\lambda_{04} - 1)} < \frac{1}{2} (w \eta + 1)\).
(12)

Thus, from (12), the estimator \(\hat{S}^2_p\) is more efficient than \(\hat{S}^2_i\) and \(\hat{S}^2_i\) if

\[
\frac{1}{2} w \eta < \frac{(\lambda_{22} - 1)}{(\lambda_{04} - 1)} \leq \frac{1}{2} (w \eta + 1)
\]
(13)

The above inequality is obviously true.

The proposed estimator \(\hat{S}^2_p\) is efficient if the following conditions are satisfied.

Cond. (i) \(w \eta \leq (\lambda_{22} - 1) \leq (\lambda_{04} - 1)\).

Cond. (ii) \(w \eta \leq (\lambda_{22} - 1) \leq (\lambda_{04} - 1)\).

Cond. (iii) \(\frac{MSE(\hat{S}^2_p)}{MSE(\hat{S}^2_i)} \leq 1\).

Cond. (iv) \(\frac{MSE(\hat{S}^2_p)}{MSE(\hat{S}^2_i)} \leq 1\).

The optimum choice of \(w_2\) minimizing (10) is given by
Substitution of optimum value of w^*_2 in (10), we get the minimum MSE of \hat{S}_p^2 which is given by

$$MSE(\hat{S}_p^2)_{\text{min}} = \left(\frac{1}{n} - \frac{1}{N}\right)S^2_{\eta}[(\lambda_{40} - 1) - \frac{(\lambda_{22} - 1)^2}{(\lambda_{04} - 1)}]. \ (14)$$

The MSE of \hat{S}_p^2 in (14) is equal to variance of the linear regression estimator, $\hat{S}_p^2 = s^2_\eta + b(s^2_x - s^2_\eta)$

where $b = \frac{s^2_\eta(\lambda_{22} - 1)}{s^2_\eta(\lambda_{04} - 1)}$ is sample regression coefficient. It is noted that Equation (14) is independent of η.

Efficiency comparison based on optimum MSE

We compare the proposed estimator with the usual variance estimator and Isaki [2] estimator.

(i) By (2) and (12),

$$\text{Var}(\hat{S}_p^2) - MSE(\hat{S}_p^2)_{\text{min}} = \frac{(\lambda_{22} - 1)^2}{(\lambda_{04} - 1)} > 0; \ (\lambda_{04} - 1) > 0.$$

(ii) By (5) and (12),

$$\text{Var}(\hat{S}_p^2)_{\text{max}} - MSE(\hat{S}_p^2)_{\text{max}} > 0 \quad \text{if} \quad \left(\frac{1}{n} - \frac{1}{N}\right)S^2_{\eta} \left(\sqrt{\frac{\lambda_{04} - 1}{\lambda_{40}} - 1}\right)^2 > 0.$$

Both of the above conditions are obviously true.

Data and Results

For comparison, we consider the following seven data sets from various sources.

Population 1: (Cochran [1], p. 325)

$\lambda_40 = 2.2387, \lambda_{04} = 2.2523, \lambda_{22} = 1.5432, \lambda_{21} = 0.4536, C_x = 0.1281, C_y = 0.1450, X = 58.8, \rho = 0.6515$.

Population 2: (Cochran [1], p. 152)

$\lambda_40 = 8.5362, \lambda_{04} = 7.3617, \lambda_{22} = 7.8780, \lambda_{21} = 0.2295, C_x = 1.0126, C_y = 0.9634, X = 103.1, \rho = 0.9820$.

Population 3: (Cochran [1], p. 203)

$\lambda_40 = 1.9249, \lambda_{04} = 2.5932, \lambda_{22} = 2.1149, \lambda_{21} = 0.1875, C_x = 0.1621, C_y = 0.1840, X = 56.9, \rho = 0.9937$.

Population 4: (Sukhatme and Sukhatme [7], p. 185)

$\lambda_40 = 3.1842, \lambda_{04} = 2.2030, \lambda_{22} = 2.5597, \lambda_{21} = 0.6665, C_x = 0.5625, C_y = 0.6163, X = 265.8, \rho = 0.977$.

Population 5: (Upadhyaya and Singh [8])

$\lambda_40 = 40.8536, \lambda_{04} = 48.1567, \lambda_{22} = 43.7615, \lambda_{21} = 5.9786, C_x = 2.1971, C_y = 2.1118, X = 2900.4, \rho = 0.977$.

Population 6: (Singh et al. [4])

$\lambda_40 = 40.608000.69, \lambda_{04} = 48.1567, \lambda_{22} = 43.7615, \lambda_{21} = 5.9786, C_x = 2.1971, C_y = 2.1118, X = 2900.4, \rho = 0.977$.

Population 7: (Singh et al. [4])

$\lambda_40 = 40.608000.69, \lambda_{04} = 48.1567, \lambda_{22} = 43.7615, \lambda_{21} = 5.9786, C_x = 2.1971, C_y = 2.1118, X = 2900.4, \rho = 0.977$.
$\lambda_{40} = 24.8969, \lambda_{04} = 37.8898, \lambda_{22} = 25.8142, $
$\lambda_{21} = 3.4347, C_x = 1.61198, C_y = 104451, X = 250111, \rho = 0.7273.$

Population 7: (Singh [5])

y: Amount (in $1000) of real estate farm loans in different states during 1997,

x: Amount (in $1000) of non real estate farm loans in different states during 1997.

$N=50, n=8, S_y^2=7342021.5, S_x^2=1176526, \lambda_{40} = 3.5822, \lambda_{04} = 4.5247, \lambda_{22} = 2.8411, \lambda_{21} = 0.9387, C_x = 1.2352, C_y = 1.0529, X = 878.16, \rho = 0.8038.$

The relative efficiency (RB) and relative bias (RE) can be obtained by using the following expressions respectively

\[
RB = \frac{\text{Bias}(\hat{S}_j)}{\sqrt{\text{MSE}(\hat{S}_j)}}; j = I, P.
\]

and

\[
RE = \frac{\text{Var}(\hat{S}_i)}{\text{MSE}(\hat{S}_i)} \times 100; i = 0, I, P.
\]

The results are given in Tables 1, 2 and 3.

In Table 3, conditions (i) and (ii) are true only if $(\lambda_{22} - 1) \leq (\lambda_{04} - 1)$. Conditions (iii) and (iv) will always remain true.

Table 1. RB of different estimators.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Pop. 1</th>
<th>Pop. 2</th>
<th>Pop. 3</th>
<th>Pop. 4</th>
<th>Pop. 5</th>
<th>Pop. 6</th>
<th>Pop. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{S}_j^2</td>
<td>0.1979</td>
<td>-0.1696</td>
<td>0.2746</td>
<td>-0.2115</td>
<td>0.3022</td>
<td>0.6234</td>
<td>0.3503</td>
</tr>
<tr>
<td>\hat{S}_p^2</td>
<td>-0.0648</td>
<td>-0.9093</td>
<td>-0.6321</td>
<td>-1.5412</td>
<td>-3.1324</td>
<td>-1.0730</td>
<td>-0.2448</td>
</tr>
</tbody>
</table>

Table 2. RE of different estimators w. r. t \hat{S}_0^2 in percentage.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Pop. 1</th>
<th>Pop. 2</th>
<th>Pop. 3</th>
<th>Pop. 4</th>
<th>Pop. 5</th>
<th>Pop. 6</th>
<th>Pop. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{S}_0^2</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>\hat{S}_j^2</td>
<td>82.33</td>
<td>5310.92</td>
<td>320.81</td>
<td>815.61</td>
<td>2679.59</td>
<td>214.32</td>
<td>106.50</td>
</tr>
<tr>
<td>\hat{S}_p^2</td>
<td>121.38</td>
<td>7536.32</td>
<td>639.15</td>
<td>1347.98</td>
<td>3698.20</td>
<td>331.90</td>
<td>159.34</td>
</tr>
</tbody>
</table>

Table 3. Conditional values.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Pop. 1</th>
<th>Pop. 2</th>
<th>Pop. 3</th>
<th>Pop. 4</th>
<th>Pop. 5</th>
<th>Pop. 6</th>
<th>Pop. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond. (i)</td>
<td>0.1613</td>
<td>1.1689</td>
<td>0.4897</td>
<td>1.6809</td>
<td>0.8223</td>
<td>0.4526</td>
<td>0.2728</td>
</tr>
<tr>
<td>Cond. (ii)</td>
<td>0.4017</td>
<td>1.0812</td>
<td>0.6998</td>
<td>1.2965</td>
<td>0.9068</td>
<td>0.6728</td>
<td>0.5223</td>
</tr>
<tr>
<td>Cond. (iii)</td>
<td>0.8238</td>
<td>0.0133</td>
<td>0.1564</td>
<td>0.0742</td>
<td>0.0270</td>
<td>0.3013</td>
<td>0.6276</td>
</tr>
<tr>
<td>Cond. (iv)</td>
<td>0.6783</td>
<td>0.7047</td>
<td>0.5019</td>
<td>0.6051</td>
<td>0.7246</td>
<td>0.6457</td>
<td>0.6683</td>
</tr>
</tbody>
</table>
Unbiased Version of the Proposed Estimator

Since our proposed estimator \(\hat{S}_p^2 \) is biased, so we use the jacknifie technique to make the estimator unbiased. Following Sukhatme and Sukhatme [7], take \(n = 2m \) and split the sample at random into two sub-samples of \(m \) units each. Let \(s_{y_1}^2, s_{x_1}^2, (i=1, 2) \) be unbiased estimator of the population variance \(S_y^2 \) and \(S_x^2 \) and \(s_y^2 \) and \(s_x^2 \) be the sample variance based on entire sample. So the unbiased version of the proposed estimator is given by

\[
\hat{S}_{p(J)}^{2(U)} = \frac{(2N-n)}{N} \hat{S}_p^2 - \frac{(N-n)}{2n} \left(\hat{S}_{p1}^2 + \hat{S}_{p2}^2 \right),
\]

where \(\hat{S}_{p1}^2 = w_1s_{y_1}^2 + w_2s_{x_1}^2 \left(\frac{s_{y_2}^2}{S_y^2} \right), (i=1, 2) \) and \(w_1 + w_2 = 1 \).

The variance expression of the unbiased estimator \(\hat{S}_{p(J)}^{2(U)} \) can be derived easily. It is to be noted that the variance expression of \(\hat{S}_{p(J)}^{2(U)} \) and \(\text{MSE} \) expression of \(\hat{S}_p^2 \) are both equal. Hence we can prefer estimator \(\hat{S}_{p(J)}^{2(U)} \) as compared to \(\hat{S}_p^2 \) because of unbiasedness.

In conclusion, the unbiased version of the proposed dual to variance ratio-type estimator is as efficient as the linear regression estimator and is more efficient than the usual variance estimator \(\hat{S}_0^2 \) and Isaki [2] estimator \(\hat{S}_i^2 \). In Table 2 (Pop. 2), the efficiency of the proposed estimator is much higher as compared to the estimators \(\hat{S}_0^2 \) and \(\hat{S}_i^2 \). Also in Table 2 (Pop.1), the Isaki [2] estimator \(\hat{S}_0^2 \) is inferior and even worse than the usual variance estimator \(\hat{S}_0^2 \). The unbiased estimator \(\hat{S}_{p(J)}^{2(U)} \) is preferable as compared to the biased estimator \(\hat{S}_p^2 \).

References