ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

Nailah Abdul Rahman Al Dihan

Mathematics Department, Girls College of Education, P.O. Box 61410, Riyadh 11567, Saudi Arabia

Received February 2005, accepted September 2005

Communicated by Prof. Dr. Q. K. Ghori

Abstract: \(P_{\alpha}^{\alpha}[A, B]\) and \(Q_{\alpha}^{\alpha}[A, B]\) denote classes of functions analytic in the disc
\(E = \{z : |z| < 1\}\) defined by a bounded radius rotation functions. In this paper we have obtained the distortion theorems, coefficients estimate, some radius problems, geometrical properties and studied convolution conditions.

Keywords: Analytic, starlike, convex, positive real part function, bounded radius rotation, convolution

Introduction

Let \(A\) denote the class of analytic functions \(f(z)\) in \(E = \{z : |z| < 1\}\), given by

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (1)\]

and let \(S, S^*\) and \(C\) be classes of functions in \(A\), which are respectively univalent, starlike and convex in the unit disc \(E\).

Janowski [4] introduced the class \(P[A, B]\) as follows:

Definition 1

An analytic function in \(E\) given by the form \(P(z) = 1 + C_1 z + C_2 z^2 + \ldots\) belongs to \(P[A, B]\) if it satisfies the condition

\[p(z) = \frac{1 + Aw(z)}{1 + Bw(z)}, \quad -1 \leq B < A \leq 1,\]

where, \(w(0) = 0\) and \(|w(z)| \leq 1\). \(P[1, -1] = P\) (the class of analytic function with positive real part satisfying \(\text{Rep}(z) > 0\)).

E-Mail N_Ali-Dihan@Hotmail.com
Definition 2

An analytic function in E given by (1) belongs to $S^*[A,B], -1 \leq B < A \leq 1$, if and only if, \[\frac{zf'(z)}{f(z)} \in P[A, B] \] and $S^*[1,-1] = S^*$. Also it is well known that an analytic function given by (1) belongs to $C[A,B]$, if and only if, \[\frac{(zf'(z))'}{f'(z)} \in P[A, B] \] and $C[1,-1]=C$.

Definition 3

A function $f \in A$ is close to convex denoted by $K[A,B,C,D]$ if \exists a starlike function $g(z) \in S^*[C,D]$ such that $\frac{zf'(z)}{g(z)} \in P[A, B]$ and $K[1,-1,1,-1]=K$ (the well known close to convex class due to Kaplan).

Definition 4

Let $P_k(\alpha), k \geq 2$ and $0<\alpha \leq 1$, be the class of functions p analytic in E and have the representation

$$p(z) = \frac{1}{2} \int_{-\pi}^{\pi} \frac{1+(1-2\alpha)ze^{-it}}{1-ze^{-it}} d\mu(t),$$

where $\mu(t)$ is a function with bounded variation on $[-\pi,\pi]$ and satisfies the conditions

$$\int_{-\pi}^{\pi} d\mu(t) = 2, \quad \int_{-\pi}^{\pi} |d\mu(t)| \leq k.$$

We note that $k \geq 2$ and $P_2(\alpha) = P[1-2\alpha,-1] = P(\alpha)$ are the class of analytic function with positive real part greater than α. It can easily be seen [5] that $p \in P_k(\alpha)$, if and only if, there exist two analytic functions $p_1, p_2 \in P(\alpha)$ such that

$$p(z) = \frac{k+2}{4} p_1(z) - \frac{k-2}{4} p_2(z)$$

Let $R_k(\alpha)$ denote a subclass of A of functions of bounded radius rotation of order α. Then $f \in R_k(\alpha)$, if and only if,

$$\frac{zf'(z)}{f(z)} \in P_k(\alpha), \quad k \geq 2, \quad z \in E.$$ \hspace{1cm} (2)

It is clear that $R_2(\alpha) = S^*(\alpha)$.

Let f be given by (1) and g given by $g(z) = z + \sum_{n=2}^{\infty} a_n z^n \in A$. Then the convolution $f*g$ is
defined by \((f\star g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n\).

Definition 5

Let \(f \in A\). Then \(f\) belongs to \(P_k^\alpha[A, B]\) if it satisfies the condition

\[
\frac{f(z)}{g(z)} = \frac{1 + A w(z)}{1 + B w(z)},
\]

where \(g \in R_k(\alpha), -1 \leq B < A \leq 1, w(z)\) is regular, \(w(0) = 0\) and \(w(z)\leq 1\) and \(0 < \alpha \leq 1\).

Definition 6

Let \(Q_k^\alpha[A, B]\) denote the class of functions \(F(z) = z^{-1} + c_0 + c_1 z + c_2 z^2 + \ldots\), which are regular in \(0 < |z| < 1\) and satisfy the condition

\[
\frac{F(z)}{G(z)} = \left[\frac{1 + A w(z)}{1 + B w(z)}\right]^{-1},
\]

where \(-1 \leq B < A \leq 1, w(z)\) is regular in \(0 < |z| < 1\) and \(G(z) = z^{-1} + d_0 + d_1 z + d_2 z^2 + \ldots\), is of bounded radius rotation of order \(\alpha\), i.e.

\[
\frac{-z G'(z)}{G(z)} \in P_k(\alpha), \quad 0 < |z| < 1.
\]

Distortion theorem for the class \(P_k^\alpha[A, B]\)

Theorem 1

If \(f \in P_k^\alpha[A, B]\), then for \(|z| = r, 0 < r < 1\)

\[
1 - A r \frac{(1-r)^{(k-2)(1-\alpha)/2}}{1 - B r \frac{(1+r)^{(k+2)(1-\alpha)/2}}} \leq |f(z)| \leq \frac{1 + A r \frac{(1+r)^{(k-2)(1-\alpha)/2}}}{1 + B r \frac{(1+r)^{(k+2)(1-\alpha)/2}}} \ldots
\]

(3)

This result is sharp.

Proof

Since \(f \in P_k^\alpha[A, B]\), we have
\[
\frac{f(z)}{g(z)} = \frac{1 + Aw(z)}{1 + Bw(z)}, \quad -1 \leq B < A \leq 1,
\]

where \(g \in R_k(\alpha) \). By Schwarz's lemma, we have \(|w(z)| \leq |z|\).

If \(p(z) = \frac{1 + Aw(z)}{1 + Bw(z)} \), \(-1 \leq B < A \leq 1\), then it is well known [4] that \(p \in P[A,B] \) and satisfies

\[
\frac{1 - Ar}{1 - Br} \leq |p(z)| \leq \frac{1 + Ar}{1 + Br} \quad \ldots (4)
\]

Further if \(g(z) \) is a function of bounded radius rotation of order \(\alpha \), then by [7]

\[
\frac{(1 - r)^{(k-2)(1-\alpha)/2}}{(1 + r)^{(1-\alpha)/2}} \leq g(z) \leq \frac{(1 + r)^{(k-2)(1-\alpha)/2}}{(1 - r)^{(1-\alpha)/2}} \quad \ldots (5)
\]

equations (4),(5) together imply the inequality (3).

This result is sharp, if we take

\[
p(z) = \frac{1 + Az}{1 + Bz} \quad \text{and} \quad g(z) = \frac{(1 + \theta_1 z)^{(k-2)(1-\alpha)/2}}{(1 + \theta_2 z)^{(1+2)(1-\alpha)/2}}, \quad |\theta_1| = |\theta_2| = 1.
\]

Remarks

1. On taking \(k = 2 \), we have a result of Ganesan [2].
2. On taking \(k = 2, B = -\lambda \beta \) and \(A = \beta \) with \(w(z) \) replaced by \(-w(z) \), we get the result of Goel and Sohi [3].

Coefficient estimates for the class \(P_k^\alpha[A,B] \)

To find the coefficient estimates for the class \(P_k^\alpha[A,B] \), we need the following lemmas:

Lemma 1 [4]

Let \(p \in P[A,B] \) and \(p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \). Then \(|c_n| \leq A - B \).

Lemma 2

If \(p \in P_k(\alpha), p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \), then \(|c_n| \leq k(1 - \alpha) \).
Proof

This can be easily seen using Lemma 1 and the relation

\[p(z) = \frac{k+2}{4} p_1(z) - \frac{k-2}{4} p_2(z) \]

with \(A = 1 - 2\alpha \) and \(B = -1 \).

Using Lemma 2, we can prove Lemma 3

Lemma 3

Let \(g \in \mathbb{R}_k (\alpha) \), \(g(z) = z + b_2z^2 + b_3z^3 + \ldots \). Then

\[|b_2| \leq k(1 - \alpha) \quad \text{and} \quad |b_3| \leq \frac{k(1 - \alpha)}{2}(k - k\alpha + 1) \]

Proof

Let \(g \in \mathbb{R}_k (\alpha) \). Then \(zg'(z) = P(z)g(z), P(z) \in \mathbb{R}_k (\alpha) \). If \(g(z) = z + b_2z^2 + \ldots \) and \(p(z) = 1 + c_1z + c_2z^2 + \ldots \), then

\[z + 2b_2z^2 + 3b_3z^3 + \ldots = (z + b_2z^2 + b_3z^3 + \ldots)(1 + c_1z + c_2z^2 + \ldots) \]

Equating the coefficient of \(z^2 \) and \(z^3 \) on both sides and using Lemma 1 and Lemma 2, we have

\[2b_2 = c_1 + b_2 \quad |b_2| \leq |c_1| \leq k(1 - \alpha) \]

and

\[3b_3 = b_3 + c_1b_2 + c_2 \]

\[|b_3| \leq \frac{b_3c_1 + c_2}{2} \leq \frac{k^2(1 - \alpha)^2 + k(1 - \alpha)}{2} = \frac{k(1 - \alpha)}{2}(k - k\alpha + 1) \]

Theorem 2

Let \(f \in \mathbb{P}_k^n [A, B] \), where \(f(z) = z + \sum_{n=2}^\infty a_n z^n \). Then

\[|a_2| \leq (1 - \alpha)k + (A - B) \]

and

\[|a_3| \leq (A - B) + k(1 - \alpha)(A - B) + \frac{k(1 - \alpha)}{2}(k - k\alpha + 1) \]
These bounds are sharp.

Proof

Since \(f \in P_k^\alpha[A,B] \), there exists a function \(g \in R_k(\alpha) \) such that
\[
f(z) = g(z)p(z), \quad p \in P[A,B].
\]

If \(g(z) = z + \sum_{n=2}^\infty b_n z^n \)
and \(p(z) = 1 + c_1 z + c_2 z^2 + \ldots \),
then
\[
z + a_2 z^2 + a_3 z^3 + \ldots = (z + b_2 z^2 + b_3 z^3 + \ldots)(1 + c_1 z + c_2 z^2 + \ldots)
\]

Equating the coefficient of \(z^2 \) and \(z^3 \) on both sides and using Lemma 1 and Lemma 3 we have
\[
a_2 = b_2 + c_1
\]
\[
|a_2| = (1 - \alpha)k + (A - B)
\]
and
\[
a_3 = c_2 + b_2 c_1 + b_3
\]
\[
|a_3| \leq (A - B) + k (1 - \alpha)(A - B) + \frac{k (1 - \alpha)}{2}(k - k^\alpha + 1).
\]

This result is sharp as can be seen by the function
\[
f(z) = \frac{(1 - z)^{(k-2)(1-\alpha)/2}}{(1 + z)^{(k+2)(1-\alpha)/2}} \frac{1 + Az}{1 + Bz}.
\]

Remarks

i. If \(k = 2 \), this result agrees with the result of Ganesan [2] and when \(k = 2, A = \beta, B = -\lambda \beta \), these results correspond to the result of Goel and Sohi [3].

ii. If \(B = 0 \), we get
\[
|a_n| \leq A(n - 1) + n, \quad n \geq 2
\]
with sharp bounds as discussed in [3] is also obtainable.

Argument of \(\frac{f(z)}{z} \) **when** \(f \in P_k^\alpha[A,B] \)

To discuss the argument of the class \(P_k^\alpha[A,B] \), we need the following Lemma:
Lemma 4

Let $f \in R_k(\alpha)$. Then

$$\left| \arg \frac{f(z)}{z} \right| \leq k(1-\alpha) \sin^{-1} r.$$

Proof

It is well known that if $f \in R_k(\alpha)$, then there exist two functions $s_1, s_2 \in S^*(\alpha)$ such that

$$f(z) = \left(\frac{k+2}{4} \right)^{-\frac{k+2}{2}} \left(\frac{k-2}{4} \right)^{\frac{k-2}{4}}.$$

Thus

$$\left| \arg \frac{f(z)}{z} \right| = \left| \frac{k+2}{4} \arg \frac{s_1(z)}{z} - \frac{k-2}{4} \arg \frac{s_2(z)}{z} \right| \leq \frac{k+2}{4} \left| \arg \frac{s_1(z)}{z} \right| + \frac{k-2}{4} \left| \arg \frac{s_2(z)}{z} \right|.$$

It is known [8] that if $s \in S^*(\alpha)$, then

$$\left| \arg \frac{s(z)}{z} \right| \leq 2(1-\alpha) \sin^{-1} r.$$

Hence

$$\left| \arg \frac{f(z)}{z} \right| \leq k(1-\alpha) \sin^{-1} r.$$

Sharpness is satisfied for $f(z) = \frac{(1+\theta_1 z)^{(1-\alpha)(\frac{k+2}{2})}}{(1+\theta_2 z)^{(1-\alpha)(\frac{k-2}{2})}}$.

Lemma 5 [4]

Let $p \in P[A, B]$. Then

$$\left| \arg \frac{p(z)}{z} \right| \leq \sin^{-1} \frac{(A-B)r}{1-ABr^2}.$$

Using Lemma 4 and Lemma 5, we can prove
Theorem 3

Let \(f \in P^\alpha_k[A, B] \). Then

\[
\left| \arg \frac{f(z)}{z} \right| \leq k (1 - \alpha) \sin^{-1} r + \sin^{-1} \frac{(A - B)r}{1 - AB r^2}.
\]

Proof

Since \(f \in P^\alpha_k[A, B] \), therefore

\[
f(z) = g(z)p(z), \quad p(z) \in P[A, B] \quad \text{and} \quad g \in R^\alpha_k(\alpha). \]

By Lemma 4, we have

\[
\left| \arg \frac{g(z)}{z} \right| \leq k (1 - \alpha) \sin^{-1} r
\]

and by Lemma 5, we have

\[
\left| \arg p(z) \right| \leq \sin^{-1} \frac{(A - B)r}{1 - AB r^2}
\]

Using (6) and (7), we have the result.

Sharpness follows by taking

\[
\frac{f(z)}{g(z)} = \frac{1 + A \theta_1 z}{1 + B \theta_1 z}, \quad |\theta_1| = 1
\]

and

\[
g(z) = \frac{(1 + \theta_2 z)^{(1 - \alpha)k - 2}/2}{(1 + \theta_2 z)^{(1 - \alpha)k + 2}/2}, \quad |\theta_2| = 1.
\]

Then

\[
\left| \arg \frac{f(z)}{g(z)} \right| = \sin^{-1} \frac{(A - B)r}{1 - AB r^2}
\]

and

\[
\left| \arg \frac{g(z)}{z} \right| = \arg(1 + \theta_2 z)^{(1 - \alpha)k - 2}/2 + \arg(1 + \theta_2 z)^{(1 - \alpha)k + 2}/2
\]
Using Lemma 4, we have
\[
\arg \frac{g(z)}{z} = (1 - \alpha)k \sin^{-1} r
\] ...

(9)

Using (8) and (9), we have that
\[
\arg \frac{f(z)}{z} = (1 - \alpha)k \sin^{-1} r + \sin^{-1} \frac{(A - B)r}{1 - ABr^2}.
\]

Remark

For \(k = 2 \) again this result agrees with the result in [2], and when \(A = \beta > 0, B = -\lambda \beta \) and replacing \(w(z) \) by \(-w(z) \), we have the result of Goel and Sohi [3].

Some radius problems for \(P_k^\alpha[A, B] \)

Lemma 6 [1]

Let \(p \in P[A, B] \). Then for \(z \in E \)
\[
\text{Re} \left\{ \alpha p(z) + \beta z p'(z) \right\} p(z) > \left\{ \frac{\alpha - [(A - B)\beta + 2\alpha A]r + \alpha A^2 r^2}{(1 - Ar)(1 - Br)} \right\} \quad \text{if} \quad R_1 < R_2,
\]
\[
\left\{ \frac{\beta A + B + \frac{2}{A - B}}{(A - B)(1 - r^2)} \left\{ (L_1 K_1)^{1/2} - \beta (1 - ABr^2) \right\} \right\} \quad \text{if} \quad R_2 < R_1.
\]

where
\[
R_1 = \left(\frac{L_1}{K_1} \right)^{1/2}, R_2 = \frac{1 - Ar}{1 - Br}, L_1 = (1 - A)(1 + Ar^2) \text{ and } K_1 = (1 - B)(1 + Br^2)
\]

This result is sharp.

Lemma 7 [7]

Let \(g \in R_k(\alpha) \). Then
\[
\text{Re} \left\{ \frac{zg(z)}{g(z)} \right\} > \frac{1 - k(1 - \alpha)r + (1 - 2\alpha)r^2}{1 - r^2}.
\]

Further, since \(g \in R_k(\alpha) \) implies \(\frac{zg(z)}{g(z)} = f(z) \in P_k(\alpha) \), we have for all \(f \in P_k(\alpha) \)
\[\text{Re } f(z) \geq \frac{1 - k(1 - \alpha)r + (1 - 2\alpha)r^2}{1 - r^2}. \]

Theorem 4

Let \(f \in P_\kappa^n[A, B] \). Then

\[
\text{Re } \frac{zf'(z)}{f(z)} \geq \begin{cases} M_1(r) & \text{for } R_1 \leq R_2, \\ M_2(r) & \text{for } R_2 \leq R_1 \end{cases},
\]

where

\[
M_1(r) = \frac{1 - k(1 - \alpha)r + (1 - 2\alpha)r^2}{1 - r^2} - \frac{(A - B)r}{(1 - Ar)(1 - Br)},
\]

\[
M_2(r) = \frac{1 - k(1 - \alpha)r + (1 - 2\alpha)r^2}{1 - r^2} + \frac{A + B}{A - B} + \frac{2}{(1 - r^2)(A - B)} \left[(L_1K_1)^{1/2} - (1 - ABr^2) \right]
\]

and \(R_1, R_2, L_1 \text{ and } K_1 \) are defined in Lemma 6.

Proof

Since \(f \in P_\kappa^n[A, B] \), there exists a function \(g \in R_\kappa(\alpha) \) such that

\[
\frac{f(z)}{g(z)} = P(z) \in P[A, B]
\]

Using logarithmic differentiation, we obtain

\[
\frac{zf'(z)}{f(z)} = \frac{zg'(z)}{g(z)} + \frac{zp'(z)}{p(z)}
\]

and

\[
\text{Re } \frac{zf'(z)}{f(z)} \geq \min \text{Re } \frac{zg'(z)}{g(z)} + \min \text{Re } \frac{zp'(z)}{p(z)}.
\]

Using Lemma 6 with \(\alpha = 0, \beta = 1 \) and Lemma 7, we have the result.

Sharpness of the bounds follow if we choose \(g_i(z)(i = 1, 2) \), of bounded radius rotation of order \(\alpha \) such that
Case 1: If $R_1 \leq R_2$, we take $P_1(z) = \frac{1 + Az}{1 + Bz}$, and
\[\frac{zg'(z)}{g(z)} = \frac{1 + (1 - \alpha)z + (1 - 2\alpha)z^2}{1 - r^2}. \]

Then \[
\frac{zP_1'(z)}{P_1(z)} = \frac{(A - B)z}{(1 + Az)(1 + Bz)}. \]

Thus at $z = -r$, \[
\operatorname{Re} \frac{zP_1'(z)}{P_1(z)} = \frac{-(A - B)r}{(1 - Ar)(1 - Br)}. \]

Case 2: If $R_2 \leq R_1$, we take $p_2(z) = \frac{f_2(z)}{g_2(z)} = \frac{1 + Aw_1(z)}{1 + Bw_1(z)}$ and

\[
\frac{zg'(z)}{g(z)} = \frac{1 + k(1 - \alpha)w_1(z) + (1 + 2\alpha)w_1^2}{1 - w^2(z)} \quad \text{with} \quad w_1(z) = \frac{z(z - c_i z)}{(1 - c_i z)}, \quad \text{where} \quad c_i \text{ defined by the condition}
\]

\[
\operatorname{Re} \left[\frac{1 + Aw_1(z)}{1 + Bw_1(z)} \right] = R_1 \text{ at } z = -r.
\]

Now \[
\frac{zp_2'(z)}{p_2(z)} = \frac{(A - B)zw_1'(z)}{(1 + Aw_1(z))(1 + Bw_1(z))}.
\]

In fact from the inequalities $R_2 \leq R_1 \leq c + p$, where $c = \frac{1 - ABr^2}{1 - B^2r^2}$, $p = \frac{(A - B)r}{1 - B^2r^2}$ and we have

\[
\frac{1 - Ar}{1 - Br} \leq \frac{1 + AT}{1 + BT} \leq \frac{1 + Ar}{1 + Br}, T = w_1(-r).
\]

Hence $|T| \leq r$ and $T^2 \leq r^2$ which yields

\[
\frac{r^2(r + c_i)^2}{(1 + rc_i)^2} \leq r^2. \quad \text{Thus} \quad |c_i| \leq 1
\]

Further $|zw_1'(z) - w_1(z)| = \frac{|z|^2 - |w(z)|^2}{1 - |z|^2}$, for $w_1(z) = \frac{z(z - c_i z)}{(1 - c_i z)}$, $|c_i| \leq 1$.

\[
w_1(-r) = T = \frac{1 - R_1}{BR_1 - A} = \frac{r(r - c_i)}{(1 + c_i^2)}.
\]

Hence $c_i = \frac{r^2 - T^2}{r(T - 1)}$ and $\frac{r^2 - T^2}{(1 - r^2)} = \frac{r^2(1 - q^2)}{(1 + qr)}$ and $\left[zw_1'(z) - w_1(z) \right]_{z=t} = \frac{r^2 - T^2}{(1 - r^2)}$.
Now \[\text{Re} \left[\frac{zp'(z)}{p(z)} \right] = \frac{(A - B)}{(1 - AT)(1 - BT)} \left\{ T - \frac{r^2 - T^2}{1 - r^2} \right\} \]

Using \[T = \frac{1 - R_i}{BR_i - A} \] with \[R_i = \frac{(1 - A)(1 + Ar^2)}{(1 - B)(1 + Br^2)} \] (see [1]),

and simplifying, we have \[\text{Re} \left[\frac{zp'(z)}{p(z)} \right]_{z=-r} = \frac{A + B}{A - B} + \frac{2}{1 - r^2} \left\{ (L_1 K_1)^{1/2} - (1 - ABr^2) \right\}, \]

where \[L_i = (1 - A)(1 + Ar^2), K_i = (1 - B)(1 + Br^2), \] (see[1]).

Thus the equality in our theorem holds at \(z=-r \) for

\[f_1(z) = \frac{1 + Az}{1 + Bz} g_1(z), \text{if} R_1 \leq R_2 \]

and for \[f_2(z) = \frac{1 + Aw_1(z)}{1 + Bw_1(z)} g_2(z), \text{if} R_2 \leq R_1, \text{where} \ g_1(z), g_2(z) \in R_i(\alpha). \]

Theorem 5

If \(f \in P_k^\alpha[A, B] \), then \(f \) is starlike in

\[|z| < \begin{cases} r_1 & \text{for } R_1 \leq R_2, \\ r_2 & \text{for } R_2 \leq R_1, \end{cases} \]

where \(R_1 \) and \(R_2 \) are defined as in Lemma 6 and \(r_1, r_2 \) are respectively the positive roots of the following two equations

\[(1 - k (1 - \alpha) r + (1 - 2 \alpha) r^2)(1 - Ar)(1 - Br) - (A - B)r(1 - r^2) = 0 \]

\[(1 - k (1 - \alpha) r + (1 - 2 \alpha) r^2)(A - B) + (1 - r^2)(A + B) + 2 \left[(L_i K_i)^{1/2} - (1 - ABr^2) \right] = 0, \]

where \(K_i \) and \(L_i \) are defined in Lemma 6. This result is sharp.

Proof

It follows from Theorem 4 that if \(f \in P_k^\alpha[A, B] \), then \(\text{Re} \left[\frac{zf'(z)}{f(z)} \right] \geq M_1(r) \), if \(R_1 \leq R_2 \) and
\[\text{Re} \frac{zf''(z)}{f(z)} \geq M_2(r), \text{if } R_2 \leq R_1. \] Then

\[\text{Re} \frac{zf''(z)}{f(z)} \geq \frac{(1-k(1-\alpha)r + (1-2\alpha)r^2)(1-Ar)(1-Br) - (A-B)r(1-r^2)}{(1-r^2)(1-Ar)(1-Br)} > 0, \text{forall } |z| < r. \]

If \(R_1 \leq R_2 \) and

\[\text{Re} \frac{zf''(z)}{f(z)} \geq \frac{(1-k(1-\alpha)r + (1-2\alpha)r^2)(A-B) + (1-r^2)(A+B) + 2(L_{1}K_{1})z - (1-ABr^2)}{(1-r^2)(A-B)} > 0. \]

For all, if \(R_2 \leq R_1 \).

For special cases see [2] and [3].

Lemma 8

Let \(g_1(z) \) and \(g_2(z) \in R_k(\alpha) \). Then \(G(z) = (g_1(z))^\rho (g_2(z))^{1-(\rho + \gamma)} \) belongs to \(R_k(\alpha_1) \) where \(\alpha_1 = 1-(1-\alpha)(\rho + \gamma) \).

Proof

A logarithmic differentiation yields

\[\frac{zG'(z)}{G(z)} = \rho \frac{zg'_1(z)}{g_1(z)} + \gamma \frac{zg'_2(z)}{g_2(z)} + (1-(\rho + \gamma)) \]

\[= \rho K_1(z) + \gamma K_2(z) + (1-(\rho + \gamma)) \]

where \(K_1, K_2 \in P_k(\alpha) \). From the definition of \(P_k(\alpha) \), there exists \(h_i, i = 1,2,3,4 \in P(\alpha) \) such that

\[\frac{zG'(z)}{G(z)} = \rho \left[\frac{k+2}{4} h_1(z) - \frac{k-2}{4} h_2(z) \right] + \gamma \left[\frac{k+2}{4} h_3(z) - \frac{k-2}{4} h_4(z) \right] + (1-(\rho + \gamma)) \]

It is well known that if \(h \in P(\alpha) \), then \(h(z) \) can be written as

\[h(z) = (1-\alpha)p(z) + \alpha, \text{where } \text{Re } p(z) > 0 \]

and
\[
\frac{zG'(z)}{G(z)} = \rho \left[\frac{k+2}{4} [(1-\alpha)p_1(z) + \alpha] - \rho \frac{k-2}{4} [(1-\alpha)p_2 + \alpha] + \gamma \frac{k+2}{4} [(1-\alpha)p_3 + \alpha] - \frac{k-2}{4} [(1-\alpha)p_4 + \alpha] + (1 - (\rho + \gamma)) \right].
\]

Since the class \(P \) is a convex set, then
\[
\frac{\rho p_1(z) + \gamma p_3(z)}{\rho + \gamma} = H_1(z) \quad \text{and} \quad \frac{\rho p_2(z) + \gamma p_4(z)}{\rho + \gamma} = H_2(z),
\]
where \(\text{Re} \ H_i(z) > 0, i = 1,2 \). Hence (10) can be written as
\[
\frac{zG'(z)}{G(z)} = \frac{k+2}{4} [(1-\alpha)(\rho + \gamma)H_1(z) + [1 - (1 - \alpha)(\rho + \gamma)]
- \frac{k-2}{4} [(1-\alpha)(\rho + \gamma)H_2(z) + [1 - (1 - \alpha)(\rho + \gamma)]
= \frac{k+2}{4} T_1(z) + \frac{k-2}{4} T_2(z), T_1, T_2 \in P(\alpha_1) \text{and} \alpha_1 = 1 - (1 - \alpha)(\rho + \gamma)
\]
This shows that \(G \in R_k(\alpha_1) \).

Theorem 6

Let \(f_1, f_2 \in P_k^\alpha[A,B] \). Then
\[
F(z) = (f_1(z))^\rho (f_2(z))^\gamma z^{1-(\rho + \gamma)}
\]
belongs to \(P_k^\alpha[A,B] \), where \(\alpha_1 = 1 - (1 - \alpha)(\rho + \gamma) \).

Proof

Let \(G(z) = (g_1(z))^\rho (g_2(z))^\gamma z^{1-(\rho + \gamma)} \). Then
\[
\frac{F(z)}{G(z)} = \left(\frac{f_1(z)}{g_1(z)} \right)^\rho \left(\frac{f_2(z)}{g_2(z)} \right)^\gamma
= (h_1(z))^{\rho} (h_2(z))^{\gamma}, \quad (\rho + \gamma) \leq 1,
\]
where \(h_1, h_2 \in P[A,B] \).
Hence $F \in P^\alpha_k[A, B], \alpha_1 = 1 - (1 - \alpha)(\rho + \gamma)$.

Some geometrical properties

In this part we shall investigate the behavior of $\arg f(z)$ at a point $w(\theta) = F(re^{i\theta})$ to the image Γ_r of the circle $C_r = \{ z : |z| = r \}, 0 \leq r < 1$ and where θ is any number of the interval $(0, 2\pi)$ under the mapping by means of function f from the class $P^\alpha_k[A, B]$. We have

Theorem 7

If $F \in P^\alpha_k[A, B]$ and $0 \leq r < 1$, then for $\theta_2 < \theta_1, \theta_1, \theta_2 \in [0, 2\pi]$

$$\arg f(re^{i\theta_2}) - \arg f(re^{i\theta_1}) = \int_{\theta_1}^{\theta_2} \text{Re} \left[\frac{re^{i\theta}f'(re^{i\theta})}{re^{i\theta}} \right] \geq -\pi + \{1 - (1 - \alpha)k + (1 - 2\alpha)(\theta_2 - \theta_1)\} + 2\pi C \cos \frac{A - B}{1 - AB}$$

where $-1 < B < A \leq 1$ and $0 < \alpha \leq 1$.

Proof

If $f \in P^\alpha_k[A, B]$, then $\frac{f(z)}{p(z)} = p(z)$, where $p \in P[A, B]$.

Thus

$$\text{Re} \frac{zf'(z)}{f(z)} = \text{Re} \frac{zg'(z)}{g(z)} + \text{Re} \frac{zp'(z)}{p(z)} \quad \ldots \quad (11)$$

Let $z = re^{i\theta}, 0 < r < 1, \theta \in [0, 2\pi]$. Integrating (11) with respect to θ in the interval $[\theta_1, \theta_2], \theta_1 < \theta_2$, we have

$$\int_{\theta_1}^{\theta_2} \text{Re} \frac{re^{i\theta}f'(re^{i\theta})}{f(re^{i\theta})} d\theta = \arg f(re^{i\theta_2}) - \arg f(re^{i\theta_1})$$

$$= \int_{\theta_1}^{\theta_2} \text{Re} \frac{re^{i\theta}g'(re^{i\theta})}{g(re^{i\theta})} d\theta + \int_{\theta_1}^{\theta_2} \text{Re} \frac{re^{i\theta}p'(re^{i\theta})}{p(re^{i\theta})} d\theta$$

Since $f \in R_k(\alpha)$, it follows that

$$\min_{g \in R_k(\alpha)} \int_{\theta_1}^{\theta_2} \text{Re} \frac{re^{i\theta}g'(re^{i\theta})}{g(re^{i\theta})} d\theta \geq \frac{1 - k(1 - \alpha)r + (1 - 2\alpha)r^2}{1 - r^2}(\theta_2 - \theta_1), \quad \text{See [7]}. $$
Now in the second integral, we observe that
\[
\frac{\partial}{\partial \theta} \arg p(re^{i\theta}) = \frac{\partial}{\partial \theta} \text{Re} \{ -i \ln p(re^{i\theta}) \} = \text{Re} \frac{re^{i\theta} p'(re^{i\theta})}{p(re^{i\theta})}.
\]
Consequently
\[
\int_0^\theta \text{Re} \left[\frac{re^{i\theta} p'(re^{i\theta})}{p(re^{i\theta})} \right] d\theta = \arg p(re^{i\theta_2}) - \arg p(re^{i\theta_1})
\]
and
\[
\max_{p \in \mathcal{P}[A,B]} \left| \int_0^\theta \text{Re} \frac{re^{i\theta} p'(re^{i\theta})}{p(re^{i\theta})} d\theta \right| \leq \max_{p \in \mathcal{P}[A,B]} \left| \arg p(re^{i\theta_2}) - \arg p(re^{i\theta_1}) \right|
\]
Using Lemma 5, we have
\[
\max_{p \in \mathcal{P}[A,B]} \arg p(re^{i\theta}) = \sin^{-1} \frac{(A-B)r}{1-ABr^2}
\]
\[
\leq 2 \sin^{-1} \frac{(A-B)r}{1-ABr} = \pi - 2 \cos^{-1} \frac{(A-B)r}{1-ABr}
\]
Hence
\[
\arg f(re^{i\theta_2}) - \arg f(re^{i\theta_1}) \geq -\pi + 2 \cos^{-1} \frac{(A-B)r}{1-ABr} + \frac{1-k(1-\alpha)r + (1-2\alpha)r^2}{1-r^2} (\theta_2 - \theta_1).
\]
The value of the right side is depending on the value of \(r \) and it takes its smallest value at \(r = 1 \). Thereby we obtain the required result.

A convolution conditions for \(p^\alpha_k [A,B] \)

In 1973, Rushweyh and Sheil-Small [9] proved the polya-Schoenberg conjecture, namely, if \(f \) is convex or starlike or close to convex and \(\phi \) is convex then \(f * \phi \) belongs to the same class. In the following we shall prove the analogue of this conjecture for the class \(p^\alpha_k [A,B] \)and give some of its applications. We need the following lemma with simple modification.
Lemma 9 [6]

Let \(f \in R_\alpha (\alpha) \). Then \(G = f^* \phi \in R_\alpha (\alpha) \) where \(\phi \) is convex in \(E \).

Theorem 8

Let \(F \in P_k^{\alpha} [A,B] \) and \(\phi \) is convex. Then \(F^* \phi \in P_k^{\alpha} [A,B] \).

Proof:

Let \(F \in P_k^{\alpha} [A,B] \). Then \(F(z) = P(z) g(z) \), where \(g \) belongs to \(R_\alpha (\alpha) \) and \(P(z) \in P[A,B] \). It follows from the Lemma 9 that \(g^* \phi \in R_\alpha (\alpha) \). Then \(\frac{F^* \phi}{g^* \phi} \in P[A,B] \).

Remark

As an application of Theorem 8, we have the following

(1) The family \(P_k^{\alpha} [A,B] \) is invariant under the following operators.

\[
F_1(f) = \sum_{n=1}^{\infty} \frac{1}{n} z^n = -\log(1-z),
\]

\[
F_2(f) = \frac{2}{z} \int_{0}^{z} f(\xi) d\xi = (f^* \phi_1)(z)
\]

\[
F_3(f) = \int_{0}^{z} \frac{f(\xi) - f(x \xi)}{\xi - x} d\xi, \quad |x| \leq 1, \quad x \neq 1
\]

\[
F_4(f) = \frac{1 + c}{c} \int_{0}^{z} \xi^{c-1} f(\xi) d\xi, \quad \Re c > 0
\]

where \(F(f_i(z)) = (f^* \phi_i)(z) \) and \(\phi_i (i = 1, 2, 3, 4) \) are convex univalent functions which satisfy

\[
\phi_1(z) = \sum_{n=1}^{\infty} \frac{1}{n} z^n = -\log(1-z),
\]

\[
\phi_2(z) = \sum_{n=1}^{\infty} \frac{2}{n+1} z^n = -2\left[z + \log(1-z)\right],
\]

\[
\phi_3(z) = \sum_{n=1}^{\infty} \frac{1-x^n}{n(1-x)} z^n = \frac{1}{1-x} \log \frac{1-xz}{1-z}, \quad |x| \leq 1, \quad x \neq 1,
\]

\[
\phi_4(z) = \sum_{n=1}^{\infty} \frac{1+c}{n+c} z^n, \quad \Re c > 0.
\]
Now let $D_\lambda F(z) = (1 - \lambda)F(z) + \lambda z F'(z) = (\psi_{\lambda} * F)(z)$...........................(12)

where $\lambda > 0$ and let $\psi_{\lambda}(z) = \frac{z[1 - (1 - \lambda)z]}{1 - z^2}$. Then $\psi_{\lambda}(z)$ is convex if

$$|z| = r_\lambda = \frac{1}{2\lambda + \sqrt{4\lambda^2 - 2\lambda + 1}}$$

...(13)

Thus, we have

(2) Let $F(z) \in P^n[A, B]$. Then $D_\lambda F(z) = \psi_{\lambda} * F$ belongs to the same class for $|z| < r_\lambda$,

where r_λ is given by (13).

Now let $\mu(F) = zF'(z)$. This differential operator can be written as $\mu(F) = \phi * F$,

where

$$\phi(z) = \sum_{n=1}^{\infty} nz^n = -\frac{z}{1 - z^2}$$

...(14)

It can be easily verified that the radius of convexity of ϕ is given by $r_c(\phi) = 2 - \sqrt{3}$. This fact together with Theorem 8 yields

(3) If $f \in P^n[A, B]$ then $\phi * f \in P^n[A, B]$ where ϕ is given by (14) if $|z| = r_c < 2 - \sqrt{3}$.

Radius of starlikeness for the class $Q^n_k[A, B]$

The following lemma can be easily derived.

Lemma 9

Let $s_i, i = 1, 2$ be given by $s_1(z) = z^{-1} + c_1 + c_2 z + c_3 z^2 + ...$ and

$s_2(z) = z^{-1} + d_1 z + d_2 z^2 + ...$, and let $s_i, i = 1, 2$ satisfy $-\frac{\text{Re} \frac{zs_1'(z)}{s_1(z)}}{s_1(z)} > \alpha$. If

$G(z) = z^{-1} + b_1 z + b_2 z^2 + ...$ such that

$$\frac{G(z)}{(s_2(z))^4} = \frac{(s_1(z))^{k+2}}{(s_2(z))^{k-2}}$$

...(15)

then
\[- \frac{zG'(z)}{G(z)} \in P_k(\alpha) .\]

Proof

Differentiating (15) logarithmically yields

\[
\frac{zG'(z)}{G(z)} = \frac{k + 2}{4} \frac{zs_1'(z)}{s_1(z)} - \frac{k - 2}{4} \frac{zs_2'(z)}{s_2(z)} .
\]

This implies that

\[
- \frac{zG'(z)}{G(z)} = \frac{k + 2}{4} \left(- \frac{z}{s_1(z)} s_1'(z) \right) - \frac{k - 2}{4} \left(- \frac{z}{s_2(z)} s_2'(z) \right)
\]

or

\[
- \frac{zG'(z)}{G(z)} = \frac{k + 2}{4} p_1(z) - \frac{k - 2}{4} p_2(z) ,
\]

where \(\text{Re } p_i(z) > \alpha , i = 1, 2 \) and \(- \frac{zG'(z)}{G(z)} \in P_k(\alpha) .\)

Theorem 9

If \(F \in Q_k^n [A, B] , \) then for \(|z| = r < 1 \)

\[- \text{Re} \frac{zF'(z)}{F(z)} \geq \begin{cases} M_1(r) , & \text{for } R_1 \leq R_2 \\ M_2(r) , & \text{for } R_2 \leq R_1 \end{cases} ,
\]

where

\[
M_1(r) = \frac{1 - k(1 - \alpha)r + (1 - 2\alpha)r^2}{1 - r^2} - \frac{(A - B)r}{(1 - Ar)(1 - Br)} ,
\]

\[
M_2(r) = \frac{1 - k(1 - \alpha)r + (1 - 2\alpha)r^2}{1 - r^2} + \frac{A + B}{A - B} + \frac{2}{1 - r^2} \left(\frac{L_1 K_1}{(A - B)^2} - (1 - ABr^2) \right)
\]

and \(R_1, R_2, L_1, \text{and } K_1 \) are defined in Lemma 6 .

Proof

Since \(F \in Q_k^n [A, B] , \) therefore
\[p(z) = \left(\frac{F(z)}{G(z)} \right)^{-1} = \frac{1+Aw(z)}{1+Bw(z)}, \text{ where } -1 \leq B < A \leq 1 \quad \ldots \quad (16) \]

\(w(z) \) is analytic in \(E \) and satisfies \(w(0) = 0, |w(z)| < 1 \),

Differentiating (16) logarithmically, we have

\[\frac{zp'(z)}{p(z)} = -\frac{zF'(z)}{F(z)} + \frac{zG'(z)}{G(z)} \]

or

\[-\frac{zF'(z)}{F(z)} = -\frac{zG'(z)}{G(z)} + \frac{zp'(z)}{p(z)}. \]

Using Lemma 6, we have

\[-\operatorname{Re} \frac{zF'(z)}{F(z)} \geq -\operatorname{Re} \frac{zG'(z)}{G(z)} - \frac{(A-B)r}{(1-Ar)(1-Br)} \quad \text{if} \quad R_1 \leq R_2 \]

\[\geq -\operatorname{Re} \frac{zG'(z)}{G(z)} + \frac{(A+B)}{(A-B)} + \frac{2\left[(L,K_1)^{1/2} - (1-ABr^2) \right]}{(A-B)(1-r^2)} \]

and since \(G \) is of bounded radius rotation of order \(\alpha \), using Lemma 7 we have

\[\operatorname{Re} \frac{zG'(z)}{G(z)} \geq 1 - (1-\alpha)kr + (1-2\alpha)r^2, \quad |z| < r \quad \ldots \quad (17) \]

Using (17), we have the required result. The bounds are sharp. This can be seen by choosing \(G_1(z) \) of bounded radius variation of order \(\alpha \) such that

\[-\frac{zG'(z)}{G(z)} \geq \frac{1-(1-\alpha)kz + (1-2\alpha)z^2}{1-z^2} \quad \text{if} \quad R_1 \geq R_2, \]

\[-\frac{zG'(z)}{G(z)} \geq \frac{1-(1-\alpha)kw_1(z) + (1-2\alpha)w_1^2(z)}{1-w_1^2(z)} \quad \text{if} \quad R_2 \geq R_1 \]

and take \(F_1(z) \) such that it satisfies

\[p_1(z) = \left[\frac{F_1(z)}{G_1(z)} \right]^{-1} = \frac{1+Az}{1+Bz}, \quad \text{if} \quad R_1 \leq R_2 \]
$$= \frac{1+Aw_1(z)}{1+Bw_1(z)} \text{ if } R_2 \leq R_1,$$

where $w_1(z) = \frac{z(1-c_1z)}{1-c_1z}$ with $|c_1| \leq 1$. Proceeding in the same way as in proving the sharpness of Theorem 4, we can prove that this result is sharp.

Theorem 10

If $F \in Q^\alpha_k[A, B]$, then F is starlike for $|z| = r_i < 1, i = 1, 2$

i. $0 < |z| < r_1$ for $R_1 \leq R_2$

ii. $0 < |z| < r_2$ for $R_2 \leq R_1$

where r_1 and r_2 are the smallest positive roots of the following equations respectively

$$
\left[1-k(1-\alpha)r+(1-2\alpha)r^2\right](1-Ar)(1-Br)-(A-B)r(1-r^2) = 0
$$

$$
\left[1-k(1-\alpha)r+(1-2\alpha)r^2\right](A-B)+(1-r^2)(A+B)+2\left[(L_1K_1)^{1/2}-(1-ABr^2)\right] = 0
$$

Proof

Using Theorem 9, we have

$$\text{Re}\left(\frac{F'(z)}{F(z)}\right) \geq M(r)_1, \text{ when } R_1 \leq R_2 \text{ and } \text{Re}\left(\frac{F'(z)}{F(z)}\right) \geq M(r)_2, \text{ when } R_2 \geq R_1.$$

Hence

$$\text{Re}\left(\frac{F'(z)}{F(z)}\right) > 0 \text{ for } |z| < r_i, i = 1, 2,$$

and this gives a sufficient condition for any function F to be starlike. Proceeding in the same way as in Theorem 5, we obtain the required result.

Acknowledgements

The author is grateful to the referee for his valuable comments and suggestions.

References

